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SOME NEW RIEMANNIAN INVARIANTS

CHRISTOPHER B. CROKE

Introduction
The purpose of this paper is to introduce some new riemannian invariants
and to study their properties. In a future paper we will study riemannian
manifolds whose invariants are large. _
In the first section the invariants are defined and are related to the
dimension of the group of isometries. In particular, we have

dim 7, < 3ATC,(2n — ATC, - 1),

where 1, is the isotropy group of isometries at a point p of an n-dimensional
complete connected riemannian manifold M, and ATC, is one of the in-
variants,

In the second section we show, using the invariants and the Rauch
comparison theorem, that for manifolds whose diameter is small relative to
their sectional curvature, the group I, is finite for all p in M. We also study
other properties of such “small diameter” manifolds.

In the third section we study how the invariants behave under products and
coverings.

In the fourth section we compute the invariants on some riemannian
manifolds.

In the fifth section we study in detail some of the properties the invariants
possess. In particular we study the p-dependence.

In the sixth section we prove a result which relates the geometries of the
submanifolds in question.

Throughout the paper a manifold will be a complete connected riemannian
manifold unless otherwise stated. A submanifold will always be an embedded
submanifold.
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1. Definitions and preliminary theorems

1.1. Definitions. A subset N of a complete riemannian manifold is said to
be:

(a) Totally Convex (TC) if whenever x, y € N and vy is any geodesic from x
toy,theny C N.

(b) Almost Totally Convex (ATC) if whenever x,y € N and y is any
geodesic from x to y such that x is not conjugate to y along v, then y C N.

(c) Completely Convex (CC) if whenever x,y € N and vy is a unique
minimizing geodesic from x to y such that x is not conjugate to y along v,
theny C N.

It is clear from the definitions that

TC = ATC = CC.

1.2. Definitions. Let M be a complete connected riemannian manifold.
For every linear S C 7, M, define N§“ to be the smallest topologically closed
totally geodesic submanifold through p such that N€ is completely convex
and S C T,(N£©). Similarly, defined Ng7€ and NJ€. Let NJ€ be the smallest
topologically closed totally geodesic submanifold such that § c 7,(N, 76,

The existence and uniqueness of these submanifolds follows from the fact
that M satisfies all of the properties (except being the smallest) and the
properties are closed under intersections.

The submanifolds are related by NJ® ¢ N&€ C N§TC ¢ NJ€ C M. The
submanifolds N$€ and N§TC are important in studying isometries as the
following propositions show.,

1.3. Proposition. Let f: M — M be an isometry of a complete connected
riemannian manifold, and S a linear subspace of T,M. Then f,|¢ determines
flyge.

Proof. Assume g: M — M is another isometry such that g,|s = f,|s, and
let h = g™ o f. Then h,}; = id. We need only show h|yec =id. Let M* be
the fixed point set of 4. We know that M" is a topologically closed totally
geodesic submanifold of M. We need only show M* is completely convex.
Let x and y be in M"*, and y a unique minimizing geodesic from x to y. Since
h(x) = x and h(y) = y, h(y) is a geodesic from x to y. Since y is minimizing,
so is A(y). Since y is the unique minimizing geodesic, y = A(y). Since k
preserves lengths, y(#) = A(y(¢)) so y € M* and M" is completely convex.
Further § C 7,M". Since NS¢ is the smallest topologically closed totally
geodesic completely convex submanifold, we have NS¢ c M*, So A nge = id.

For N#7€ we have a similar result.
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1.4. Proposition. Let I(M) be the group of isometries of a complete con-
nected riemannian manifold M, and let I{ = {g € I(M)s.t. g |s = fils} for S
linear in T,M and f € I(M). Then the set {h: N§™C — M s.t. h = g|yrc for
g eI} zsﬂnzte

Note. Proposition 1.3 says that the corresponding set for NS¢ consists of
one element.

Proof. I{ = f-I¥ I¥is a closed Lie subgroup of the isotropy subgroup at
p and thus is compact. It is sufficient to show that the action of g € Ii¢ on
NZTC is determined by the component of I which g lies in, since there are
only a finite number of components. Since 73 is a Lie group it is sufficient to
show that if g is in the identity component of 1.9, then g| ngre = id. So let g,
be a one-parameter subgroup of I such that g = 8, for some ¢, Let M* be
the set of points fixed by all g,. We know that M* is a topologically closed
totally geodesic submanifold of M. Further g,,|¢ =id forallzso § C T,M%.
Thus in order to show NJT¢ ¢ M# we need only show M# is almost totally
convex. Let x,y € M#%, and y be a geodesic from x to y. If y # M%_ then
g,v) is a one-parameter group of geodesics from x to y. This implies that x is
conjugate to y along y. Therefore, if x is not conjugate to y along vy, then
vy C M%, Thus M* is almost totally convex. q.e.d.

These propositions are most interesting, when S has small dimension, and
N$C or NET€ is the whole manifold.

LS. Definition. For M complete and connected, and p € M, CC(M) =
min{dim S|S € T,M and N$€ = M}. This is clearly well defined since
NES, = M.

Slm11arly, define 7C,(M), ATC,(M), TG (M).

We have the followmg relat10nsh1p 0 < TC,(M) < ATC,(M) < CC(M)
< TG, (M) < n, where n is the dimension of M. Further 1 < CC,(M) as the
point p is always a topologically closed totally geodesic completely convex
submanifold.

These numbers do depend on the point p. See Section 4 for examples and
Section 5 for discussion of the p-dependence.

The previous propositions lead us to the following relationships between
ATC,, CC, and the dimension of the isotropy subgroup of isometries at p.

1.6. Theorem. Let M be a complete connected riemannian manifold. For
P € M, let I, be the isotropy subgroup of isometries at p. Then

dim(1)) < 3ATC,(2n — ATC, — 1) <3CC,(2n —~ CC, — 1).

Proof. Let p: I, » O(n) be the isotropy representation. Let S be an
ATCP-dimenswnal linear subspace of T,M such that Ng™€ = M. Such a
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subspace exists by the definition of 4TC,. Now by Proposition 1.4 there are
only a finite' number of isometries whose differentials leave § fixed. Let
O(n-ATC,) be the group of rotations which leave S fixed. Then p(1,) N O(n
— ATC,) is finite. Since p is injective, the result follows by checking the
dimensions of the Lie algebras, i.e., dim I, < dim O(n) — dim O(n — ATC)
=31 ATC,(2n — ATC, — 1). The other inequality follows from noticing that
ATC, < CC,. qed.

Note. The inequality dim(,) <3;CC,(2n — CC, — 1) can be derived di-
rectly using a similar argument and Proposition 1.3. These inequalities can be
improved by using representations of Lie groups.

The inequality dim 7, <3 CC,(2n — CC,, — 1) can be made strict for most
values of n and CC, by noticing that O(n)/ O(n — CC,) does not admit a Lie
group structure so that the embedding f

I, —*——o@)

f
O@m)/0(n - CC,)

cannot be diffeomorphism.

The riemannian invariants A7C,, CC,, TC,, TG, give rise to differential
invariants as follows.

1.7. Definition. If M is a smooth connected manifold and p € M, define

CC = max{ CC,(M, p)|p a complete metric}.
Likewise define A?é, Tf’\C/, TG.

Note. The differential invariants are independent of the point p. Let g be
any other point of M. Then there is a diffeomorphism f of M such that
f(g) = p. Thus

CC;(M> p) = CCq(MLf*p)'

The differential invariants are related to the Hsiang (or Compact) degree of
symmetry by
1.8. Corollary. If M" is a smooth connected manifold, then

h(M) < LATC(2n — ATC —1) + n,

where h(M) is the Hsiang degree of symmetry.

Proof. Let G be a compact group of diffeomorphisms of dimension (M)
acting effectively on M. Let p be any complete metric on M, and p the
G-averaged metric (i.e., p = f; g7'p dg). Let G, be the isotropy subgroup.
With the averaged metric, M is a complete connected riemannian manifold
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on which G acts as a group of isometries. Since G is effective, dim G <
dim G, + n. By Theorem 1.6,

S e
dim G, < 34TC(M)(2n — ATC,(M) — 1) < 34TC(2n — ATC — 1).

Hence the corollary follows.

2. Manifolds with small diameter
The inequality of Theorem 1.6,

dim(1,) < 3ATC,(2n — ATC, — 1),

tells us that ATC, = 0 implies I, is finite (since it is known to be compact
Lie). In this chapter we will take advantage of this fact.

The following will be a useful corollary to the Rauch Comparison Theo-
rem.

2.1. Lemma. Let M", MJ be complete riemannian manifolds such that
Ky, 2 Ky (i.e., all sectional curvatures in M, are larger than those in M). Let
P € M and py, € M,. Let I be an isometry from T,M to T, M. Assume further
that there are no critical points of Exp, or Exp, in B(0). If 1 € B(0) c T,M
is a differentiable curve, then

L[Exp, 7] > L(Exp, I(r)),

where L represents length.
Proof. It is sufficient to show for every ¢ that ||Expp"r’(t)|| >
|Exp,,, I(7'(2))||. Consider the variations

a(s, t) = Exp, s 7(2),

ag(s, 1) = Exp,, s- I(7(2)).
Now for fixed ¢ the variation vector fields V*, V{ along the geodesics
¥(s) = a(s, ) and y,(s) = ay(s, 1) are Jacobi fields with V/(0) = 0 = V(0),
and further /(V"%(0)) = V'§(0) and /(y'(0)) = y¢(0) so by the Rauch theorem
(see [2, pp. 29, 30)), ||V (s)|| = || Vo(s)]. But V(1) = Exp, 7'() and V(1) =
Exp, . I(7'(?)), so the lemma follows. q.e.d.

The following standard path lifting lemma will be useful in proving the
main theorem of this chapter.

2.2, Lemma. Let M be a complete connected riemannian manifold, and
7: [0, 1] — M a piecewise differentiable curve. Let p € M and v € T,M such
that v is not in the conjugate locus in T,M and that Exp, v = 7(0). Assume
further that for t € [0, 1] there is an € > 0 such that for all s <t there is a
unique lift 7: [0, s]— T,M starting at v (i.e., 7(0) = v and Exp, 7 = 7| )
such that the distance from 7(s) to the conjugate locus is > & (in the usual
metric on T,M). Then there is a unique lift 7: [0, {] — T,M of 7 starting at v.
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Remark. The above lemma tells us that  can be uniquely lifted to 7 as
long as 7 does not approach the conjugate locus. This follows from the fact
that if 7: [0, 1] > 7, M exists, and 7(z) is not in the conjugate locus, then near
7(2), Exp, is a diffeomorphism, so for some & > 0, 7 can be uniquely extended
to [0, ¢ + €]

Proof of Lemma 2.2.  All lengths of vectors in 7, M will be with respect to
the usual metric while all distances of points in M will be with respect to the
metric on M. Let L be the length of 7 (/(1)). By the Gauss Lemma any partial
lift 7: [0, s] — 7, M must lie in B,(0) where r = ||v|| + L. Let U, be the union
of all B,(w) for w in the conjugate locus in 7, M. Then U, is open and for all
s<tLHs)eE(T,M—- U,)nN B B,(0)= C. C is a compact subset of T, M which
contains no conjugate points. Consider Exp restricted to SC, the umt sphere
bundle of 7C C TT,M. Since SC is compact and IExp, V|| # 0 for V& .
SC, there is an A4 > 0 such that ||Exp, V|| >4 for all % € SC. Thus for
any piecewise differentiable curve y C C we have /(Exp, C) > AI(C). There-
fore L/ A > I(7|,,). Since C is compact, {7(s)|s € [0, #)} has a limit point
7(#). This limit point is uniquie since 7|, has finite length. Thus there is a
unique lift 7: [0, /] - T, M.

Remark. In the above lemma we ignored questions of differentiability of
7. The necessary differentiability conditions follow from the fact that 7 is
piecewise differentiable, and Exp, is a local diffeomorphism away from the
conjugate locus.

23. Definition. A riemannian manifold M is said to have small diameter if
M is compact connected with diameter d such that d <47 /Vk where k is
some positive number with & > K,,.

24. Theorem. If M is a manifold of small diameter, then I, is finite for all
p EM.

Remark. Let RP” have the metric of constant curvature k. Then d(RP")
=17/ Vk and I, = O(n) for all p € RP" showing that the theorem is sharp.

The theorem contains the following well-known result.

2.5. Corollary. If M is a connected compact manifold of nonpositive curva-
ture, then I, is finite for allp € M.

Proof. M is easily seen to have small diameter by letting 0 <k <
(Gm/d)P.

2.6. Corollary. If a manifold M of small diameter also satisfies one of the
following:

(a) x(M) # O, where x is the Euler characteristic,

(b) M is orientable and some Pontrjagin number is not 0,
then I(M) is finite.



NEW RIEMANNIAN INVARIANTS 449

Proof. These conditions imply that one-parameter groups of /(M) have
fixed points (see [3]).

Proof of Theorem 2.4. By the Rauch Comparison Theorem, the first
conjugate point y(7,) along any geodesic y from p does not occur until a
distance 7/ Vk along y. Therefore the critical points of Exp,: T,M — M lie
outside the open ball B, vz (0).

We claim that Exp,'(p) N B,,vz(0) does not lie in any (n — 1)
dimensional linear subspace S of T, M. ‘

Assume such an S exists. Let V € T,M be a unit vector normal to S. Let

a/Vk-V e T,M and q = Exp, 4. Let 7 be a minimal geodesic from ¢
to p. Since dlam(M) <iw/Vk, L(r) <iw/Vk . By the Gauss Lemma and
Lemma 2.2 there is a unique lift 7 of 7 to 7,M such that 7#(0) = §. Further,
the Gau§s Lemma tells us ¥ C B, vz (0). Now Exp, 7(1) = p, so (1) € S by
assumption.

.M

Let py € S”, the sphere of constant curvature X, and let I: T,M" — T, S" be
an isometry. By Lemma 2.1, L(r) = L(Expp ) 2 L(Expp 7). If we let
Exp,, 1§ be the north pole, then Exp, I(S) is the equator, and since Exp, I7
is a curve from Exp, I§ to Exp, I(S),

1z/Vk > L(1) > L(Exp,, If) > y7/Vk
giving the contradiction.

Now consider Ng'™ -p € N§T€. Let V € Exp,'(p) N B,,vz. Then
Exp, tV is a geodesic y from p to p such that p is not conjugate to p along v.
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Thus vy C N§™¢ and ¥V € T,Ng”. By the claim the set of such ¥’s
span T,M. Thus T,M = T,N, ATC which implies that Ng7¢ = M so that
ATC (M y=0. From Theorem 1 6 we get I is finite. q.e.d.

If M is a complete connected riemannian manifold, we will let A7 denote its
universal covering space with the induced metric from 7: M- M.

2.7. Proposition. Let M be a manifold of small diameter. If for some p € M
we have the cut locus to p is equal to the first conjugate locus in 7;;]\?, then
|7 (M)| > dim(M). Further I ; C Aut(m(M)).

Proof. Consider the following commutative diagram:

Exp-~
TaM ———2 31

177* 1 m

Exp_ .~
7f(p M ) M
7, will take the first conjugate locus in 7 M to the first conjugate locus in
T, »M. Since M is a manifold of small d1ameter we know that the first
conjugate locus lies outside B, vz (0). Therefore the cut locus in Tj M lies
outside of B N,;(O) Thus Exp;|B 7/ VE z(0) is a diffeomorphism. Let S =
Exp,,,( »7(P) N B, ,vz (0). By the claim in the proof of Theorem 2.6 we know
that S lies in no (n — 1)-dimensional linear subspace, so S contains at least
n + 1 points. Let S’ c M be Exp; © 7, (S). Since Exp; o 7 '|B ,ve(0) is a
diffeomorphism, S’ has at least n + 1 points. Further #(S’) = {#(p)}, so
71(M) > n. Now we know that each element of 1, ; acts as an automorphism
of 7;(M), so we have a homomorphism I, ; — Aut(7,(M)). We need only
show that this is injective. For each element V' € S, the loop Exp, ¢tV
corresponds to an element of 7,(M). The above argument shows that the
function S — (M) is one-to-one. Let f € I,; such that f corresponds to
the identity in Aut(7,(M)). Now f, acts as a permutation on S, and since f
corresponds to Id € Aut(7(M)), £, leaves S fixed but since § spans T, M, f,
leaves T, M fixed. Therefore f = Id on M, so the map I, ; — Aut(m(M)) is
injective. _

2.8. Corollary. Let M be a manifold of small diameter. If for some p € M
the first conjugate point along any geodesic eminating from p has multiplicity >
2, then |7 (M)| > dim(M), and I, C Aut(7y(M)).

Proof. Let p € M be such that 7(p) = p. Then the first conjugate point
along any geodesic emanating from p has multiplicity > 2. The corollary will
follow from the theorem and the following lemma found in Warner [6].

29. Lemma. Let M be a complete riemannian manifold. Let p € M such
that the first conjugate point along any geodesic from p has mwdtiplicity > 2
Then M is simply connected if and only if the first conjugate locus is equal to the
cut locus in T,M.
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Proof. Let g be any point in M such that g is not conjugate to p along any
geodesic, and ¢ is not in the cut locus to p. By Morse theory [5], 2, ; has the
homotopy type of a C.W. complex with a cell of dimension A for each
geodesic from p to ¢ to index A. Since the first conjugate point along any
geodesic has multiplicity > 2, we see there are no l-cells in this C.W.
complex. Thus M is simply connected if and only if for each such g there is a
unique geodesic v, of index 0. y, must be the unique minimizing geodesic. If
cut = first conjugate, it is clear that the only geodesic from p to such a g of
index O is the unique minimizing geodesic. Since the set of such ¢’s is dense,
we have that if the only geodesic from p to g of index 0 is the unique
minimizing geodesic then the cut locus equals the first conjugate locus.

2.10. Corollary. Let M" be a complete simply connected riemannian mani-
fold. Assume that there is a k > 0 such that k > K, and that for somep € M
the first conjugate locus is equal to the cut locus in T,M. Let G be a finite group
acting freely on M through isometries. If |G| < n, then the orbit of B, ;v (p)
does not cover M.

Proof. Assume the orbit did cover M. Studying the proofs of Theorems
2.4 and 2.7 we see that we can replace the condition on the diameter with a
similar condition on the maximum distance from p to any point in M. In the
current case the image of p in M/G will satisfy this condition. Hence
|7 (M/G)| >n,but 7 (M/G) = G and |G| < n.

Remark. A similar statement can be made about free group actions where
|G| < mn only, then the disk will be smaller.

2.11. Corollary. If M is a compact manifold of nonpositive curvature, then I,
is a subgroup of Aut(7r(M)) for allp € M.

Remarks. (1) If 77 is the flat torus coming from the standard Z X Z
action on R?, then for allp € T2 I, = Aut(m(M)).

(2) Applying Corollary 2.10 to S” with constant curvature k& we see that the
orbit of the open upper hemisphere under a G action (|G| < n) does not
cover. In fact, there is no way to cover S” with » disks of radius 7/ 2Vk even
without a group action. Such a conclusion, however, is hard to make for other
simply connected spaces with first conjugate locus equal to the cut locus. A
simple volume argument will not suffice. The corollary may be saying more
about the shape of such spaces than about free finite group actions.

3. Products and coverings
-~ In this section we study how the invariants behave under coverings and
products. In the next chapter we will give examples which show that the
results of this section are the best possible.
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We begin with some useful lemmas.

If M, and M, are complete connected riemannian manifolds, then so is
M, X M,. Any geodesic y from (p,,p,) is (v, v2) where vy, and vy, are
geodesics in M, and M, from the points p, and p,.

3.1. Lemma. Lety C M, X M, be a geodesic from (p,, p,) to (q,, g;). Then
(1, Po) is conjugate to (q,, q,) along v if and only if p; is conjugate to q; along v,
for some i = 1o0r2.

Proof. 1f p, is conjugate to g; along v, then there is a variation a(s, ) >
M, through geodesics such that the variation vector field V(¢) along (0, ¢) =
Y(?) is not identically 0, but ¥(0) = ¥(1) = 0. Let a(s, {) > M, X M, be
defined by a(s, ¢) = (a(s, 1), Y,(?)), i #j. Then a(s, 1) is~a variation through
geodesics, y(¢) = d(0, £) and the variation vector field V(¢) along y(¢) is not
identically 0, but ¥(0) = ¥(1) = 0. Thus (p,, p,) is conjugate to (g,, ¢,) along
v. If (p,, py) is conjugate to (qy, g,) along v, let a(s, {) > M, X M, be an
appropriate variation through geodesics. Now a(s, ) determines variations
a,(s, ©) > M, and a,(s, t) > M, through geodesics by projection. Now if ¥{(¢)
is the variation field along vy, then V(¢) = V(¥) + V,(¢) where ¥, and V,
correspond to the variations a, and a,. Thus V() Z 0 implies ¥V, 2 0 for
some i, and V(0) = V(1) = 0 implies V(0) = V(1) = 0. Therefore p; is con-
jugate to ¢; along y; = a0, -).

3.2. Lemma. If N, is a topologically closed totally geodesic submanifold
(resp. CC, ATC, TC) of M, i = 1, 2, then N, X N, is a topologically closed
totally geodesic submanifold (resp. CC, ATC, TC) of M, X M,.

Proof. N, X N, is clearly a closed submanifold. If V' € T, ,\N; X N,,
then ¥V = ¥, + V¥, where V] is tangent to N,, and V, is tangent to N,. Since
N, is totally geodesic, the geodesics v; such that y/(0) = V; are in N,. Thus the
geodesic ¥ = (v, v») is in Ny X N,, and y'(0) = V. Thus N, X N, is totally
geodesic. Now if y is a unique minimizing geodesic from (p,, p,) to (g;, ¢,),
then vy, will be the unique minimizing geodesics from p; to ¢,. Thus if the N;’s
are CC, N, X N, is CC. If y is any geodesic from (p,, p,) to (g;, ¢,), then v,
will be a geodesic from p; to g;. Thus, if the N;’s are TC, then N, X N, is TC.
If v 1s a geodesic from (p,, p,) to (q;, ¢,) such that (p,, p,) is not conjugate to
(4, g») along v, then Lemma 3.1 tells us that p; is not conjugate to g; along v;.
Thus, if the N;’s are ATC, then N, X N, is ATC. Hence the lemma follows.

33. Lemma. Let N C M; X M, be a topologically closed totally geodesic
(resp. CC, ATC, TC) submanifold, and let (p,,p;) € N. Then N N M, (M,
here is the copy of M, going through the point (p,, p,)) is a topologically closed
totally geodesic (resp. CC, ATC, TC) submanifold of M,.

Proof. Since M is a closed totally geodesic submanifold of M; X M,, so is
N n M. Thus N 0 M, is a topologically closed totally geodesic submanifold
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of M,. If y C M, is a geodesic in M, between two points in N N M,, then y is
clearly a geodesic in M, X M, between two points in N. Thus N being TC
gives N N M, being TC. If y C M, is a unique minimizing geodesic, then vy is
a unique minimizing geodesic in M; X M,. Thus, if N is CC, then N N M, is
CC. If y C M, is a geodesic from p to ¢ € M, such that p is not conjugate to
q along vy (thinking of conjugacy in M), then p is not conjugate to ¢ along y
in M; X M,. This follows since y = (y;, v,) Where v;, j %1, is the constant
geodesic, so Lemma 3.1 tells us that y; not conjugate implies y is not
conjugate. Thus N being ATC gives N N M, being ATC.

3.4. Proposition. Let M, and M, be connected complete riemannian
manifolds. Then CC,(M,) + CC,(M;) > CC(, (M, X M,) >
max{CC, (M), CC, (M,)}. Likewise for TC, ATC, and TG.

Proof. (1) Assume CC, (M) > CC,(M). Let § C T, (M XMy
such that dim(S) < CC lM1 Let S, be the projection of S onto T, , M.
Then dim(S);) < dim § < CC, M. Let N C M, be Ng€. Since dim(S)) <
CC, (M), N # M,, thus N X M, # M; X M,. Now N X M, is a topologi-
cally closed complete convex totally geodesic submanifold of M, X M, by
Lemma 3.2. 8 C T, , N X M,,s0 N§° C N X M, # M, X M,. Since this
was true for all § of dimension less than CC, M, > CC, M, we have
CCp, pyM1 X My > max{CC, (M,), CC,(M,)}. The exact same argument
works for TC, ATC and TG.

(2) Let S; C T, M; be such that dim(S;) = CC,(M,) and stc = M,, and
S C T, ppyM, X M, the direct sum S, @ §,. Consider NEC. By Lemma 3.3,
NEE N M, is a closed totally geodesic CC submanifold of M. Further,
S; C T, py(N$€ N M), and since NS(M) = M, we have that M; C Ng©.
Thus T, , M, @ T, ,M,=T, ,,M XM, is in T,(NgC). Therefore
N§© =M, X My, so CC, , (M, X M, < dim(S) = CC, M, + CC, M,,
and the result follows. Again, the same proof works for TC, ATC, and 7G.

In §5 we will see that if either M, and M, is compact, then CC, ,(M; X
M) = max{CC, (M), CC, (M,)}. Likewise for TC and ATC.

If M is a connected complete riemannian manifold, we will denote by M its
universal covering space with the induced metric, and by =: M— M the
covering projection.

35. Lemma. If N C M is a closed totally geodesic (resp. TC, ATC)
submanifold, then so is 7 (N) C M.

Note. * This lemma is false for CC. Let p € T2 (flat torus), then { p} is CC,
but #~'(p) € E?is not CC.

Proof of Lemma. Llet N = 7 Y(N). N is closed since N is closed. N is a
totally geodesic submanifold since N is, and this is a local property. Let ¥ be
geodesic in M between two points in N. Then m(§) = v is a geodesic between
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two points in N. Thus, if N is TC so is N. If ¥ is a geodesic in M between P
and g such that p is not conjugate to ¢ along ¥, then y = #(f) is a geodesic
from #(p) to #(g) such that #(p) is not conjugate to 7(¢g) along y. Thus if N is
ATC, sois N.

3.6. Proposition. ATC,(M) > ATC,,,. Similarly for TC and TG.

Note. The author cannot prove the corresponding result for CC, but has
found no counterexample

Proof. LetS C 1T, M such that dim(S) < ATC,,(M), and let §* = 7, S.
Then N§7€ # M since dim(S’) < ATC, (p)(M) Therefore w"(Ng"TC) # M
but Lemma 3.5 implies N#7C C 7 )(N47€) # M. Thus ATC,(M) >
ATC,(M). Similarly for 7C and TG.

Remark. The above obviously holds for any covering space.

4. Examples
In this section we examine some examples where the invariants can be
computed. These examples serve to show the sharpness of the propositions in
§3, and also illustrate some further properties of the invanants.
4.1. Example. If M is a manifold of small diameter, then

TC,(M) = ATC,(M) = 0

forallp € M. .
This follows from the results in §2 and the fact that TC,(M) < ATC,(M).
4.2. Example. If S”, RP”, or R” (n > 1) have constant curvature, then, for

all p,
TC,(S") = 0, ATC,(S") = CC,(S") = TG,(S") = n,
TC,(RP") = 0, ATC,(RP") = CC,(RP") = TG,(RP") = n
TC,(R") = ATC,(R") = CC,(R") = TG,(R") = n.

To show this let M be one of 8", RP"or R”, and fixp e M. If § C T,M is
any linear subspace, then Exp, S is a topologically closed almost totally
convex totally geodesic submanifold of M. Thus ATC,(M) = n. Since ATC,
< CC, < TG, < n, all of the above follow with the exception of the TC’s.
For S" or RP" the set of closed geodesics from p to p covers the space.
Therefore TC,(S") = TC,(RP") = 0. In R, Exp, S is totally convex for any
S C T,M. Thus TC,(R") = n.

In a future paper we will show that these spaces are the only ones with
CC, (M) =nforallp € M.
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The projection 7: S" — RP” serves as an example where ATCP(M )=
ATC,,(M). While the projection 7: R” — T" where T" is the flat torus is an
example where ATC,(M) > ATC,,(M). In fact these same examples work
similarly for the other invariants.

Next we consider an example where the invariants depend on the point at
which they are evaluated. ﬁ

4.3, Example. Let M be a paraboloid of revolution with vertex v.
v

Fi1G.4.1
TC, (M) = ATC,(M) =1, CC (M) = TG, (M) =2, TC(M) = ATC,(M) =
0, CC,(M) = TG,(M) = 1, forp #v.

First consider the vertex ». Since every geodesic from v does not return to
v, we see that {v} is totally convex, so that NJ € == M. If S is any one-dimen-
sional subspace of T, M then Exp, S consists of the two geodesics running
down on opposite sides of M. Since this set is completely convex, CC,(M) =
2 and so TG, (M) = 2. However there are geodesics running from one side of
M to the other such that the endpoints are not conjugate along the geodesic.
Thus ATC,(M) =1 and TC, (M) = 1. Now if p # v, consider the closed
geodesic y represented in Fig. 4.1. Let S be the one-dimensional subspace at p
generated by ¥'(0). It is clear that the only topologically closed totally
geodesic submanifold N of M with § C T,M is M itself. Thus TG,(M) < 1.
But 1 < CC,(M) < TG,(M) < 1. Further, since p is not conjugate to p along
Y, we get ATC,(M) = 0 and thus TG,(M) = 0.

Now we will consider some products. For brevity we will consider only
ATC,.

4.4. Examples. (1) ATC,(S" X §°) = max{r, s}.

(2) ATC,(R" X R) = r + s; R’, R® with flat metric.

(3) ATC,(S” X T*) = r where T is the flat torus, and we assume that
r>1.

Example (2) is the same as Example 4.2, while Examples (1) and (3) will
follow from Proposition 5.8.

In the above, Examples (1) and (2) serve to show the sharpness of
Proposition 3.4. (3) shows that for every pair (s, r) of integers such that

-0 < r < n there is an n-dimensional manifold M with ATC,(M) = r.



456 CHRISTOPHER B. CROKE

In general it is not easy to compute these invariants. In the next example
we will consider CP".
4.5. Example, For CP” with the symmetric space metric we have

TC,(CP") = 0, ATC,(CP") = CC,(CP’k) = TG,(CP") = n.

(Note: n = real d1mens1on) Every geodesic emanatlng from p returns to p,
thus TCI,(CP") :

The strategy in computing the remaining numbers is as follows. First we
will show that if § C 7,CP" is a complex subspace, then Exp, § is a
topologically closed, almost totally convex, totally geodesic submanifold.
Then since every subspace of dimension less than » is contained in a complex
subspace S # T,CP”, we have ATC,(CP") > n. Next, by examining Lie triple
systems we construct an n- d1mens1ona1 subspace S C T, »(CP") such that the
only closed totally geodesic submanifold n with S C T,N is CP" itself.
Therefore TG,(CP") < n. Furthermore, n < ATC, (CP") CG,(CP™) <
TG,(CP") < n, and the result will follow.

For»the first part consider the fibration:

1 N S2n+1

7

CpP”
7 is a riemannian submersion where $%”*! has the usual metric induced from
C*LIfj € S7*1 let T;  T;5%"*! be the subspace perpendicular to if (ip
is the vector at p obtained by parallel translation in C**loof ip € T,C*FD).
Then 7,(CP”) can be identified with T (7(p) = p) through 7,;. If y is a
geodesic from p in CP”, then the geodes1c § from p in $?**! with correspond-
ing initial tangent vector has the property that #(¥) = v.

Kobayashi and Nomizu (see [3, pp. 273-278]) show that for each complex
m-dimensional subspace § C T,CP" there is a complex totally geodesic
submanifold N c CP” such that § = T, N (in fact N = CP™). We need to
show that N is ATC. Let y be a geodesic between two points ¢, g, € N such
that y ¢ N. It is sufficient to show that g, is conjugate to g, along 7.

Let §, € $***! such that 7(§,) = ¢, and let S' = T, N and S' c T; be
the corresponding subspace. We claim that 7 '(N) C S+l g equal to
S2*+1 n Q€ where Q€ is the complex linear subspace of C**! spanned by §,
and S, S! being translated to 0 € C**1.

Proof of claim. Since N is totally geodesic, we know that all geodesics
from §, with initial tangent vectors in §' must lie in #~'(V). This tells us that
§2+1 QR c 77 /(N) where QR is the real span of §, and S'. By the
definition of C"*! — CP" we see that $**! 0 Q¢ ¢ #7'(N). For dimension
reasons and the fact that #71(V) is a connected closed 2m + 1 submanifold,
we see S 0 QF = 77(N).
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Now let § C $*! be the geodesic from §, corresponding to y. Since
yZ N, ¥ 2 7 '(N). Since $***' n Q€ = 77 \(N) is ATC, we see that §, is
conjugate to 4, along ¥ (4, = ¥(1) so #(§,) = g@,). In fact, we can find a
variation ¥, of geodesics such that ¥,=1v, ¥,0) =4, ¥(1) =4, and
{§(0), i§,» = 0. In particular ¥{(0) € T; . Therefore y, = m(%,) is a variation
through geodesics in CP” with vy = v, v,(0) = ¢,, and y,(1) = g,, and ¢, is
conjugate to g, along vy.

For the second part we first consider a subspace T C T,CP” such that
T = T,N where N is a totally geodesic submanifold of CP". We know that if
§pér &€ T, then R(§), §)6 € T.

We claim that if £, £, € T such that {§,, J¢,> #0, then J§, € T. We
know that R({;, §)§, € T. Using the formula for curvature given by
Kobayashi and Nomizu (see [4, p. 277)),

R(&, £)6, = h(&y, £)& — &y, £)6 + h(é), £)6 — k(& £)E,
= h(&, )& — 8(& §0)6 — [28(52’ J&) — g(é ng)]ng
= h(& £)& — 8(& §0)6 — 38(&, JEDI &

where £ is the hermitian inner product. The first two terms are clearly in T,
and since g(§,, J§) # Owe get J§, € T.

We now construct an n-dimensional subspace S by describing a basis
{&, & - -+, &, Choose &, arbitrarily, and §, outside the subspace spanned
by £, and J§, but close enough to J&; such that g(§,, /&) # 0. In general
choose & outside the subspace spanned by &, J&;, &, J&k, - - -, &, J& 4
but close enough to J&_, such that g(§, J§_,) # 0. We can certainly choose
n vectors this way. Let T = T, N4, so that § € T. Fori > 1, g(§,1, J&) #
0 so J&,., € T. Further g(§,,J&) = — g8(6,, /&) # 0, so J§ € T. Thus
T = T,CP” so that Ny = CP”, and hence TG,(CP") < n.

It should be possible to compute the invariants for the other symmetric
spaces of rank 1 in a similar way.

One would expect CP” to have large invariants where in fact we get only
half the real dimension. In a future paper we will see that for normal
homogeneous spaces M if ATC(M) >1(n + 3), then M is isometric to
M X Ms where M" is a constant curvature space and r > 1(n + 3). Thus
irreducible normal homogeneous spaces other than S”, RP”, or R” have
ATC, < 3(n + 3).

We have been able to show, with the assistance of Allen Back, that for
simple lens spaces ATC,(L]) =1(n — 1). We have also computed the in-
variants for generalized Lens spaces and compact Lie groups with bi-in-
variant metrics.
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5. Continuity properties
For a smooth manifold M let G(M) be the Grassman bundle of r-
planes. Define the bundle G(M)>M by G(M) = G(M) + G(M)
+ -+ +G,(M), where + is disjoint union. For M connected complete
riemannian consider the following functions:

f,
G —<5—s G (M) con—2t——z
‘[ﬂ' lﬂ'
M id M M cC 7

where d(S) = dimension of S, CC(p) is CC,, and fo(S) = T,,(S)(NSCC).
These functions are related as follows: CC(p) = min{d(S)|S € = '(p) N
(d ° foc)'(n)}. We can likewise define ATC, f, 1 (tesp. TC, TG).

In this section we wish to consider the continuity properties of these
functions. We have seen that CC need not be constant, thus CC is not
necessarily continuous. We will show it is upper semi-continuous. Also f.-
need not be continuous, for there could exist S, S, such that d(S,) = d(S,)
but d(focSy) # d(focS,)- We will show that this is the only way in which f.
is not continuous. Using the results we will then show CC(, ,(M; X M,) =
max{CC, (M;), CC, (M,)} (resp. TC, ATC) whenever M, or M, is compact.

If N is a connected topologically closed totally geodesic submanifold of M
and p € N, then Exp,(T,N) = N. With this the following lemma comes
immediately from the definition of f..

5.1. Lemma. (a) S C f.cS.

(b) Image of foc = {S|Expysy(S) = N5}

(©) fec © fee = fec
Similarly for TC, ATC, and TG.

5.2. Proposition. The image of f.c is closed in G(M).

Proof. Let S;— S be a convergent sequence in G(M) such that S; €
Im( f-c). We can assume that d(S;) = d(S) = r for all i. Let p; = #(S;) and
p = @(S). We know p, — p. We need only show that Exp, S = Ng<, i.e., that
Exp, S is a topologically closed, completely convex, totally geodesic submani-
fold. Let N; = Exp,S; and N = Exp, S. For every ¢ € N we will show:

(1)3S8? C T,M such that d(S?) = r and Exp,(S?) C N.

(2) V¢’ € N if y is a unique minimizing geodesic from ¢ to ¢’ such that g is
not conjugate to ¢” along vy, then y C N.

(1) Let ¢ € N. Then there is a ¥ € § such that ¢ = Exp, V. Let V; € §;
such that ¥; — V'and |V}| = [¥|. Let ¢, = Exp, ¥}, and S% = T,(N). Let
Y(#) = Exp,(¢V;). Then since each N, is totally geodesic, S% is the parallel
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translate of §; along y; to ¢;. If y(¢) = Exp,(¢V), then y;,—>y, and thus
S% - S? where S? is the parallel translate of S along y. Now let W € §9,
and choose W, € §% such that W, > W and |W,| = |W|. We need to show
that Exp, W € N. Let z = Exp, W and let z; = Exp, W;. Thus z; — z. Since
N, is totally geodesic and W; € T, N, we have z; € N;. Thus there is a
W, € S, such that z; = Exp, W, We can choose W, such that |W;| < |Vl +
|W,| = |V| + |W/|. Therefore some subsequence of the W, converge to W €
S. Thus we get Exp, W =lim, Exp, W, = lim,_,, z; = z. So property @)
is shown.

(2) Let ¢’ € Exp, S and let y be a unique minimizing geodesic from g to ¢’
such that g is not conjugate to ¢’ along y. That is, the cut point along vy (if it
occurs at all) happens after ¢’. Similar to part (1) choose ¢; — ¢, ¢/ — ¢, and
S%, S4. Let v, be a minimizing geodesic from ¢; to ¢/. Since the distance to the
cut locus is a continuous function on the unit sphere bundle (see [2, p. 94)),
for i large enough there is a unique minimizing geodesic 7; from g; to ¢; such
that g; is not conjugate to g/ along 7,. Since N, is completely convex 7, C N,
so 7/(0) € T, N, = S% Some subsequence of the 7/(0) converge to a V' € S
Let 7 =Exp, tV. By part (1), 7 C N. Since 7 is a limit of minimizing
geodesics, T is minimizing from ¢ to ¢’. Since y is the unique minimizing
geodesic, 7 = y. Therefore y € N and (2) is shown.

To complete the proof of the proposition it is sufficient to show that for
every ¢ € N there is an ¢ > 0 such that N N B(q) = Exp,(S? N B,(0)).
Choose € so small that Exp, is a diffeomorphism on B,(0) and that for every
4, q" € B,(q) = Exp,(B,(0)) there is a unique geodesic y% from ¢’ to ¢” in
B.(g), further yqq,,' will be minimizing and ¢’ will not be conjugate to ¢” along
yq‘lf. We know from (1) that Exp(S? n B,(0)) C N N B(g). Assume there
wasa g € N N B,(q) such that ¢ & Exp,(S? N B.(0)). By (2) all the geodes-
ics yZ will be in N for ¢” € Exp(S? N B,(0)). But this means that N
contains an open subset of dimension r + 1. But N is the image of S by the
exponential map, so by Sard’s theorem this cannot happen. Thus the proposi-
tion follows.

Next we consider the image of f, .. We will use the following lemma. The
author would like to thank Allen Back for the proof.

53. Lemma. Let V € TM such that V is not a critical point of EXp,.
Then there are open sets U, U, U”, with Ve U cCc TM, «(V)e U’ Cc M,
and Exp(V) € U” € M, such that f: U U’ X U" isa dlffeomwphlsm where
fi TM - M X M by (W) = (n(W), Exp(W)).

Proof. The function f is clearly differentiable. Consider f,,: T, TM —
T yM © TgyyyM. Since TM is a bundle over M, the image of f,; contains
T vyM, and since V' is not a critical point of Exp,,, we see that Ty, (M) is
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in the image of f,,. For dimension reasons f,, is an isomorphism. By the
inverse function theorem there is an open set O C TM such that f|; is a
diffeomorphism onto its image. Choose U’, U” such that U’ X U” C f(0),
andlet U= f(U' X U"). , .

5.4. Proposition. - The image of f,c is closed.

Proof. We first note that Im f,~ C Im f... This follows because if
" Exp, S = N§7¢ then Exp, S = N5€. Let S, > S in G(M) such that S; €
Im f, 7. By Proposition 5.2, S € Im f... Therefore we need only show that
Exp, S is almost totally convex (p = 7(S)). Let ¢, ¢ € N = Exp, S. Let v
be a geodesic from ¢ to ¢’ such that ¢ is not conjugate to g" along y. Let
V' € T,M be such that V is tangent to y and Exp V' = ¢". We need to show
V € T,V. Since q is not conjugate to ¢’ along v, V is not a critical point of
Exp,. Choose subsets V€ U C TM,q€ U' C M,and ¢ € U" C M asin
Lemma 5.3 As in the proof of Proposition 5.2 choose sequences ¢; — ¢, ¢/ —
g’ such that g, g/ € N, = Exp,, S;. For i sufficiently large ¢, € U’ and
g, € U”. Thus by the lemma there is a unique ¥; € U such that #(V)) = g,
and Exp(V)) = ¢/. Further V; - V. Since the function f of the lemma is
nonsingular in U, V; is not a critical point of Exp,. Now the geodesic
() = Exp, 1V, is a geodesic from g; to g; such that g, is not conjugate to g;
along vy. Therefore since N, is almost totally convex, v; C N; so V; € T N,.
Since T,N;— TN (see proof of Proposition 5.2) and V;,— V, we have
V' € T,N. Therefore N is almost totally convex and the proposition follows.

Remark. The author suspects that Im( f;) is always closed while Im( f7;)
is not always closed.

Next we consider the functions d © fo- and d ° f, 7.

5.5. Proposition. The functions d o foo and d o fro are lower semi-
continuous.

Proof. We need to show that for every g € {0,1,- - - ,n} the set @ =
(d°fee)™0, 1,- - -, g} is closed. Let S;— S in G(M) where S, € Q. We
haved ° f(S;) € {0, 1, - - - , g} and therefore d ° f--(S;) = r for an infinite

number of i’s and some r < g. Thus foo(S)) € G, M. By the compactness. of
the fibres in G, M some subsequence f-(S;) converges to an S € G(M).
Since the image of fcc is closed, S is in the image of fec- By Lemma 5.1 we
have Exp, § = N§€ and S; C fo(S)). Therefore S C S. So we get N§€ €
N§€ and d o fo(S) <r <gq. Thus S € Q implying that Q is closed. The
same argument works for de fyrc

We are now in a position to study the function CC.

5.6. Theorem. The image of the function CC (resp. TC, ATC, TG) consists
of at most two consecutive integers r and r + 1. Further CC (resp. ATC) is
upper semi-continuous (i.e., CC ~\(r) is open).
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Proof. To show the first part we will show that for every p and ¢ in M,
CC(q) < CC(p)+ 1. Let S C T,M be a linear subspace of dimension
CC(p), such that NS¢ = M. Let y be any geodesic from p to g¢. Let
S C T,M be S’ = y2(S) + Y(g), where y? represents parallel translation.
Dimension of S’ < dimension of S + 1 = CC(p) + 1. We need only show
NEC = M. Since y'(q) € S’, we know that vy is in N§C, so that p € NE€,
Since y2(S) C 8 C T,NSC and NEC is totally geodesic, S C T,NEC, but M
is the only topologically closed, completely convex, totally geodesic submani-
fold through p with S in its tangent space at p. Therefore N&¢ = M. The
same argument works for TC, ATC, and TG.

For the second part, assume the image of CC consists of the points r and
r+ 1. Then CC7'(r) = m(G(M) N (d ° foo)"(n)). By Proposition 5.5,
(d ° foc) {(n) is open in G(M). Thus G(M) N (d > foc)(n) is open in
G,(M). Since 7: G(M)— M is an open map, (G, (M) N (d ° foc) \(n)) is
open. The same argument works for ATC.

Now we consider the functions f.- and f,; in greater detail. We have
noted earlier that these functions need not be continuous since subspaces of
the same dimension can have images of different dimensions. We will put a
new topoplogy on G(M) to take care of this, and the resulting functions will
be continuous. :

Let GCYM) = G(M) N foH(G(M)), and define GC(M) to be the dis-
joint union of the G<“.. We have the following commutative diagrams of
functions:

GeC fee , GCC fec > GCC

=g
-
a
Ne—
3
C———
2
-
a
PAR——
5

5 MTM
gec L.
I |-

where 7 is the identification (ignoring topologies). Similar spaces and dia-
grams can be constructed for ATC.
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5.7. Theorem. The diagrams (1), (2), and (3) are commutative diagrams of
continuous functions.

Proof. We need to show:

(a) GS¢ 5 G is continuous.

(b) G¢ 5 M is continuous.

1 . .
(©) G5 Gis continuous.

(d) G55 GC is continuous.
(a) is continuous since G has a finer topology than G. (b) is continuous
from the commutative diagram:

e —

N

In order to show that a function from G°C is continuous it is sufficient to
show that its restriction to each G is. continuous. foo: G¢ — G(M). Let
C be a closed set in G,(M). We need to show that D = f;}(C) is closed in
GEC. Let S, — S be a convergent sequence in G such that S; € D. Since

S;—> Sin G, S, > S in G. By a previous argument some subsequence

Jec(S;) converges to a subspace S € G. Since Jec(S) € G(M), Seq (M)..
Since fCC(S ) € C a closed set, § € C. By the same argument as before
fec(S) © S but for dimension reasons (ie, S € G so f.(S) €

G(M)) foc(S)=SECs0S €D = Je&(C). Therefore (c¢) follows. In order
to show (d) we need only note that since foc ° foc = foc we have foo(GES)
C GFC, thus (c) implies (d). All of the arguments above work for 4TC.

Remarks. In Theorem 5.6 we see that the points with highest CC form a
closed set F. The author suspects that they form a closed submanifold of
codimension at least 2.

We are now in a position to prove

5.8. Proposition. Ler M, be a compact riemannian manifold, and M, a
complete riemannian manifold. Then for p, € M\, p, € M,, CC, , (M, X
M) = max{CC, (M,), CC,(M,)} (resp. TC, ATC).

Remark. This does not hold for TG as TG,(R') = 1, TG(S") = 1, while
TG, ,R' X Sh=2.

Proof. Letr, = CC (M) Let A' = {S € GT,M)|N$¢ = M,}. By pro-
position 5.5, Al and A are open in G"(T, M,) and G'(T, M,) respectively.
Since the set of geodesics y from p such that v(?) is a cut point of p for all
t > t,is nowhere dense (that is to say the set of y'(0)’s is nowhere dense in the
unit sphere) and since A4’ is open, we can choose S' € A' and a basis
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{Xp- -, X, }of S ! such that the geodesics y,(¢) = Exp, ¢X; are not in the
above set. Choose S2 € 4% and a basis {Y},- - -, Y, }. We will assume
|X;| = |Y;| = 1. Since 4' is open, there is an e > 0 such that for any set

{Z), Z,,- - -, Z, )} of unit vectors in T, M, the subspace spanned by {X,; +
aZy, - -+, X, +a,Z }isin A" whenever || < & for all i.

Let 4 be the diameter of M,. Choose b; > 0 such that d < &b; and v,(b,) is
not a cut point of p;. Let ¢ > 0 be some number less than the distance from
p, to its cut locus. Let S Cc T, ,\M; X M, be the span of {b X, +
Yy, -, b X, +cY,,cY, -+, cY, } (or the other way around if r; >
r,). We need only show by 3.4 that N¢ = M, X M,. Let v’ be the geodesic
(vi ¥3) = Exp, , #(bX; + c¥)). y'(¢) lies in N3¢ for all 1. By the choice of
b; and ¢, ¥'(1) = (y{(1), (1)) is not on the cut locus to (p;, p,) in M| X M,.
Thus the unique minimizing geodesic o’(¢) from (p,, p,) to y(1) must lie in
NEC. If we parameterize 6'(£) so that ¢’(1) = y'(1), then ¢”(0) = (¢,Z;, cY)) €
T(,.pyNs € where ¢; < d and |Z] = 1. Thus

(Pr.p
Yil(o) - Uil(o) =bX,+cY, —e¢Z —cY,=bX —e¢Z € T(pppz)NsCC’

which implies that X; — (¢;/5)Z; is in T, ,\M X M,, so that the subspace
S’ spanned by {X; —(e;/b)Z;,- - -, X, —(e,/b,)Z,} is contained in
T, ppNs €. Since |-¢,/b| <e, S’ € A' where S’ is considered as a subspace
of T, M, By Lemma 3.3, NN M, must contain Ng°= M,, so that
X, € T, , Ns€ Thus Y, € T, , N5 and S> c T, , N5, and hence
M, c N§C. The result now follows. The exact same argument works with CC
replaced with ATC or TC.

6. A geometric relationship

The purpose of this section is to prove the following result.

6.1. Theorem. Let 7: [0, 1] - G'(T,M) be a piecewise C™ path such that
() is in the image of foc (resp. TC, ATC). Then Exp,(7(0)) is isometric to
Exp,(r(1)).

We will first need a series of lemmas.

6.2. Lemma. Let M be a complete riemannian manifold. Let 0,(¢), 0,(¢) be
C* curves in M such that 6,(0) = 0,(0). Assume further that for each t € [0, 1]
there is a topologically closed totally geodesic CC submanifold N, such that

@) o) EN,,

(ii) o;(¢) is perpendicular to N,.

Then o,(t) = ox(¢) for all ¢.

Proof. Let 4 = {t €0, 1]|6,(¢) = 05(9)}. Clearly 4 # & and 4 is closed.

For ¢ close to A4, o,(¢) is not a cut point of 0,(f), so there exists a unique
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minimizing geodesic v,(s) from 6,(¢) to o,(?):

O,

T

Oy

Since o0,(¢) € N, and N, is completely convex, v,(s) € N,. Therefore by (ii),
{v0), a1()> = {v/(1), o5(1)> = 0. The first variation formula allows us to
conclude that A is open, and the lemma follows.

6.3. Lemma. Let N C M be a topologically closed totally geodesic submani-
fold of M. Forp € N,A € T,N, and X € T,T,M such that X is perpendicular
to T,N, we have Expp X is pe;pendlcular o N.

Proof If Exp,. X = 0, the result holds trivially. Otherw15e let J(¢) be the
Jacobi field along Exp, t4 such that J(0) = 0, and J'(0) is the translation of
X to 0 in T, M. Then J(1) = Exp, (X), but since N is totally geodesic and
both J(0) and J'(0) are perpendicular to N, we have J(¢) perpendicular to N,
and the result follows.

64. Lemma., Let F: N" X [ - M" (n < m) be a C® function where N is a
smooth manifold and M is a complete riemannian manifold. Assume:

(i) F,: N — M is a smooth embedding,
(i) F,(N) = N, is totally geodesic (not necessarily closed),

(ii1) for every (p, t) € N X I; F,, ,0/0t is perpendicular to N,.
Then N, is isometric to N, in the induced metric.

Proof. For p € N and X, Y € T,N, define X(?), Y(¢) € T, ,)N X I in
the obvious way. We need only show 9 /3t F*g)(X(¢), Y(¢)) = O where F¥g is
the pulled back metric.

Let 4 = {(p,t) € N X I|F,,,3/0t # 0}. By continuity it is sufficient to
show that the above holds on 4 and on the complement of the closure of 4.

Let (p, 1) be in the complement of the closure of 4. There are open sets
pE€UcC Nandt € V C Isuchthat forall(q,s) € U X V, F(q, 5)3/dt =
0. Therefore F, |, = F, |U for ¢,, t, € V. Thus for X(¢), Y(¢) at (p, t) we have
d/ di(F¥g)(X (D), Y(1)) =

Let (p, {) € A. There is anopenset U X V C N X Isuchthat F|,,isa
C* embedding. Extend X(¢), Y(¢) on U X I such that [X, 3/3¢] = [Y, 9/91]
= 0. Let X, Y and T be the vector fields on F(U X V) induced by F,. Then
we have 9/31(FFg)X(f), Y(1)) = Tg(X, ¥) =V, 8(X, ) =g(V X, Y) +

g(x, V3 Y) = g(V4xT, Y) + g(X, V4 T). On the other hand, N, is totally geo-
desic, and X and Y are tangent to ¥,, while T is perpendicular to N,. Thus
V4T and V4T are perpendicular to N, Hence 3/3t(F}¥g)(X(?), Y(¢)) = 0,
and the lemma follows.
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Proof of Theorem 6.1.  Clearly we can assume that 7 is C*. Let ST'(T, M)
be the stiefel manifold of orthonormal r-frames in 7,M with the normal
homogeneous metric. Let ST"(7,M )—>G’(T M) be the principal bundle.
Define a connection on 7 by takmg as horizontal subspaces the subspace
perpendicular to the fibre. Let 7(¢) be any horizontal lift of 7(¢). Let L: R” X
I— T,M be L(X, {) = 7(£)X where 7(£): R"— T,M is the orthogonal trans-
formation induced by 7(f) as an element of S7"(7,M). Since 7 is horizontal,
L ,(x,»0/0t is perpendicular to the linear subspace 7(¢) = 7(£)(R") C T,M. Let
N, = Exp,(7(#)). By assumption, N, is a topologically closed totally geodesic
CC submanifold. By Lemma 6.3, Exp,. L, ,3/0¢ is perpendicular to N, for
all(x, ) ER" X I.

We now define F: Ny X I - M. For ¢ € Ny, C M let § € T,N, be such
that Exp, § = q. Let F(q, #) = Exp,(L(70)"(g), t). To show F is well defined
let 4 be another point in T,N, such that Exp,§ = g. Let oy(f) =
Exp,[ L(7{0(4), ] and let o0)(r) = Exp,[L(7(§), N)]. Now 0,(0) = 6,(0) = ¢
and o,(7), 0y(f) € N,. Further we have o{(?) = Exp,s L,;7,0/3¢ which is
perpendicular to N,. Similarly o5(¢) is perpendicular to N,. Lemma 6.2 now
tells us that 0,(¢) = 0,(¢), so F is well defined. A similar argument shows that
F,is 1 — 1. F, is clearly onto N, as the image of F, is Exp, 7() = N,

If ¢ € N, is such that there is more than one minimizing geodesic in N,
from p to g, then the image F/(g) will have more than one minimizing
geodesic in N, from p (this follows from the definition of F, which takes
geodesics from p to geodesics from p). Since the continuous function
L(-, 1) ° 7, = F,. takes ordinary tangent cut points in 7,N, to ordinary
tangent cut points in 7, N, and since the ordinary tangent cut points are dense
in the tangent cut locus in 7, N, (see [1, p. 133]), F,. takes tangent cut points
in Ny to cut points in N,. Now by the definition we see that F, is a
diffeomorphism when restricted to the complement of the cut locus. Thus
Lemma 6.4 tells us that F, is an isometry when restricted to the complement
of the cut locus to p.

In fact the theorem will follow from Lemma 6.3 if we show F, is a
diffeomorphism. This will follow if we show that F, is a diffeomorphism when
restricted to the complement of the cut locus to ¢ for all ¢ in a small
neighborhood of p.

Let ¢ be the distance from p to its cut locus in N, (and hence N,). Let
g € Ny be any point in the ball B (p). Let g, = F(q). Let B, be the
orthonormal frame at g, obtained by the parallel translation of 7(¢) along the
unique minimizing geodesic from p to g,. Note B, = F,.B, by the fact that F,
is a local isometry. Let L. R" X I — TM be the transformation induced
from the B,’s. For x €R’, x| <ic, we see by the local isometry of F, that



466 CHRISTOPHER B. CROKE

there is a y € R” such that for all # € I, Exp, L9(x, t) = Exp, L(Y, f). Thus
we have Exp,, Li ,3/0¢ is perpendicular to N, for all x €R” such that
|x| <3C. Along the geodesic v,(s) = Exp,, L%sx, t) C N, consider the field
Exp, , Li,0/3t =J(s). J(s) is the variation field of the variation a(s, 7) =
v,(s) and thus is Jacobi. By the above for small s, J(s) is perpendicular to N,
and is always so since N, is totally geodesic. Thus Exp,, L, ,3/0¢ is
perpendicular to N, for all (x, 1) €R” X 1.

Now define F? from L7 as we defined F, from L. All the facts about F,
now hold for FZ. In particular, F7 is a diffeomorphism when restricted to the
complement of the cut locus to ¢ in N, We need only show F? = F,. From
the definition, F§ = F; (they correspond to the identity map on N,). Let o be
in N, Let 0,(f) = F(0) and o0,(¢) = F(o). From the above, o/(¢) is per-
pendicular to N, and o(f) € N,, so the result follows from Lemma 6.2. The
result follows for ATC and TC since the image of f, or frc is contained in
the image of f..

Remark. Theorem 6.1 is false for 7G. Let M = S! x R. Then all geodes-
ics through a given point are TG (their images are closed). All but one are
isometric to R while one is isometric to S

Added in proof. The author has recently noticed that arguments similar to
those in the second section of this paper show that if M" is a manifold of
small diameter such that 1 > K,, > 1/4, then |7,(M)| > n and I, injects into
Aut(m,(M)) for all p € M.
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